On recovery of block-sparse signals via mixed l2/lq (0 < q ¿ 1) norm minimization
نویسندگان
چکیده
Compressed sensing (CS) states that a sparse signal can exactly be recovered from very few linear measurements. While in many applications, real-world signals also exhibit additional structures aside from standard sparsity. The typical example is the so-called block-sparse signals whose non-zero coefficients occur in a few blocks. In this article, we investigate the mixed l2/lq(0 < q ≤ 1) norm minimization method for the exact and robust recovery of such block-sparse signals. We mainly show that the non-convex l2/lq(0 < q < 1)minimization method has stronger sparsity promoting ability than the commonly used l2/l1 minimization method both practically and theoretically. In terms of a block variant of the restricted isometry property of measurement matrix, we present weaker sufficient conditions for exact and robust block-sparse signal recovery than those known for l2/l1 minimization. We also propose an efficient Iteratively Reweighted Least-Squares (IRLS) algorithm for the induced non-convex optimization problem. The obtained weaker conditions and the proposed IRLS algorithm are tested and compared with the mixed l2/l1 minimization method and the standard lq minimization method on a series of noiseless and noisy block-sparse signals. All the comparisons demonstrate the outperformance of the mixed l2/lq(0 < q < 1)method for block-sparse signal recovery applications, and meaningfulness in the development of new CS technology.
منابع مشابه
Efficient ℓq Minimization Algorithms for Compressive Sensing Based on Proximity Operator
This paper considers solving the unconstrained lq-norm (0 ≤ q < 1) regularized least squares (lq-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the proximity operator for nonconvex lq-norm functions into the fast iterative shrinkage/thresholding (FISTA) and the alternative direction method of multipliers...
متن کاملOn RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using ℓq Quasi Norms
This paper follows the recent discussion on the sparse solution recovery with quasi-norms lq, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at lea...
متن کاملCompressed Sensing with coherent tight frames via $l_q$-minimization for $0<q\leq1$
Our aim of this article is to reconstruct a signal from undersampled data in the situation that the signal is sparse in terms of a tight frame. We present a condition, which is independent of the coherence of the tight frame, to guarantee accurate recovery of signals which are sparse in the tight frame, from undersampled data with minimal l1-norm of transform coefficients. This improves the res...
متن کاملOn RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions
This paper follows the recent discussion on the sparse solution recovery with quasi-norms `q, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at lea...
متن کاملRecovery of signals by a weighted $\ell_2/\ell_1$ minimization under arbitrary prior support information
In this paper, we introduce a weighted l2/l1 minimization to recover block sparse signals with arbitrary prior support information. When partial prior support information is available, a sufficient condition based on the high order block RIP is derived to guarantee stable and robust recovery of block sparse signals via the weighted l2/l1 minimization. We then show if the accuracy of arbitrary p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013